
Time-Quality Tradeoff of
MuseHash Query Processing Performance

Maria Pegia1,3,§[0000−0003−2643−0028],
Ferran Agullo Lopez2,§[0000−0002−7276−2472],
Anastasia Moumtzidou1[0000−0001−7615−8400],
Alberto Gutierrez-Torre2[0000−0002−5548−3359],

Björn Þór Jónsson3[0000−0003−0889−3491],
Josep Lluís Berral García4,2[0000−0003−3037−3580],

Ilias Gialampoukidis1[0000−0002−5234−9795],
Stefanos Vrochidis1[0000−0002−2505−9178], and
Ioannis Kompatsiaris1[0000−0001−6447−9020]

1 Information Technologies Institute - Centre for Research and Technology Hellas,
Thessaloniki, Greece {mpegia,moumtzid,heliasgj,stefanos,ikom}@iti.gr

2 Barcelona Supercomputing Center, Barcelona, Spain
{alberto.gutierrez,ferran.agullo}@bsc.es

3 Reykjavik University, Reykjavík, Iceland {mpegia22, bjorn}@ru.is
4 Universitat Politècnica de Catalunya, Barcelona, Spain josep.ll.berral@upc.edu

Abstract. Nowadays, large quantities of multimedia data are gener-
ated by various applications on smartphones, drones and other devices.
Facilitating retrieval from these multimedia collections requires (a) effec-
tive media representation and (b) efficient indexing and query process-
ing approaches. Recently, the MuseHash approach was proposed, which
can effectively represent a variety of modalities, improving on previous
hashing-based approaches. However, the interaction of the MuseHash ap-
proach with existing indexing and query processing approaches has not
been considered. This paper provides the first systematic evaluation of
the time-quality tradeoff that arises when MuseHash media represen-
tation is combined with state-of-the-art approximate nearest-neighbour
indexes along multi-core and GPU processing.

Keywords: MuseHash · Query processing performance · Approximate
nearest neighbour indexes · High-Performance Computing.

1 Introduction

Joint representations of media modalities have recently come into focus within
the multimedia community. The most common and successful approaches are
based on supervised learning of hash functions, where a model is trained to en-
code the different modalities into a joint representation, typically a hash code

§The first two authors contributed equally to the research reported in this paper.



2 M. Pegia et al.

based in Hamming space. At query time, the given query modalities are then
hashed into the same representation, and the media collection is ranked based
on similarity to the hash code of the query. So far, in this work, the focus of
the evaluation has been on the effectiveness of the hash codes, as represented
by retrieval accuracy over relatively small benchmark collections. As media col-
lections become increasingly large and complex, however, we must consider the
efficiency of query processing with these representations. This paper represents
the first step in this direction.

Query processing using such hash codes is one instance of the nearest neigh-
bour problem, which is a well-studied problem in the literature. Challenges for
nearest-neighbour queries arise when dealing with large-scale high-dimensional
collections. This has been termed “curse of dimensionality” since, as dimension-
ality or dataset size increases, using indexes to return exact nearest neighbour
results becomes intractable and a brute-force scan of the collection is neces-
sary [24]. To make retrieval feasible at large scale, a multitude of approximate
indexing methods have been proposed, based on a variety of approaches, includ-
ing tree-based structures, graph-based structures, and hashing-based structures.
Such approximate indexes yield a time-quality tradeoff between efficiency and
effectiveness, more precisely between query processing performance and result
quality, that must be evaluated. For some tasks, approximate indexes can even
improve quality compared to the brute-force scan. Furthermore, with the increase
in available processing power, multi-core and GPU processing can be applied to
facilitate hash-code creation and also, depending on the index structure, simi-
larity computations.

In this paper, we present an analysis of query processing performance with the
MuseHash approach [22], a recent state-of-the-art multimodal hashing approach
for media representation. The main contributions of this paper are:

– We have combined MuseHash media representations with a large set of ap-
proximate indexes implemented in the ANN Benchmarks system.

– We have explored the impact of multi-core and GPU processing, using High-
Performance Computing (HPC) infrastructures.

– We present experiments for two benchmark collections, a small aerial dataset
and a much larger lifelog collection, as well as synthetic collections.

The results indicate that MuseHash can be combined with approximate indexes
for efficient query processing, in particular the graph-based HNSW structure,
which is considered state-of-the-art in the indexing community, outperforming a
full sequential scan in terms of result quality. We also show that while multi-core
and GPU processing can improve the performance of the evaluated approach,
this impact alone is smaller than the impact of the indexing structure.

The remainder of this paper is organised as follows. Section 2 presents the
state-of-the-art in hash-based media representation, including the MuseHash ap-
proach. Section 3 then presents the relevant state-of-the-art approximate indexes,
while Section 4 presents multi-core processing and HPC. Section 5 then offers
our analysis of the experimental results. Finally, Section 6 concludes.



Time-Quality Tradeoff of MuseHash Query Processing Performance 3

2 Hash-Based Representation and MuseHash

Hash-based representations play a crucial role in efficiently indexing and retriev-
ing multimedia data. They condense complex feature vectors into compact hash
codes, streamlining storage and retrieval processes.

MuseHash [22] is a recent multimodal hashing algorithm which excels in
handling multimedia data with diverse modalities, leveraging a combination of
modalities in its queries, such as visual and temporal aspects, to deliver highly
relevant results. In brief, MuseHash extracts features independently for each
modality, utilizing Bayesian ridge regression to learn hash functions that map
features to the Hamming space. This separate computation for each modality
enables support for both unimodal and multimodal queries.

In more detail, the method involves three main phases: training, offline, and
querying. In the training phase, hash functions are generated from the training
collection using Bayesian ridge regression. These functions map feature vectors
from each modality to the Hamming space. Affinity matrices are created based on
ground truth labels, and semantic probabilities are derived from these matrices.
During the offline phase, features are extracted from the retrieval set for each
modality. Using the learned hash functions, hash codes are computed and stored
in a database, ensuring efficient storage and retrieval of multimedia data. Finally,
in the querying phase, hash functions learned in the previous steps are applied to
a given query. Unified hash codes are generated from query-specific hash codes
using the XOR operation. The database is queried using Hamming distances,
leading to the retrieval of top-k relevant results. Overall, MuseHash combines
supervised learning, Bayesian regression, and Hamming distance-based retrieval
to significantly enhance the accuracy and efficiency of multimedia data retrieval.

Overall, MuseHash as a hash-based approach gives compact representations
of data and uses less memory for data storage. However, the fast similarity search
for the ranking procedure is too slow, when you use brute-force and you have to
query large collections. Thus the motivation to use optimization techniques in the
ranking procedure drive us to decide approximate nearest neighbors approaches.

3 Approximate Indexes and ANN Benchmarks

The nearest neighbors problem is crucial in computer science, involving finding
the closest data points to a given query within a dataset [1]. It is applied in
pattern recognition, data mining, image retrieval, and recommendation systems.
Exact solutions to this problem are computationally challenging, particularly
with large datasets. Approximate nearest neighbors algorithms [3] offer a prac-
tical compromise, providing reasonably accurate matches while significantly im-
proving computational efficiency, making them ideal for large-scale applications.
This involves balancing retrieval accuracy and faster query processing, ideal
for large-scale datasets. Evaluating approximate nearest neighbor algorithms in-
cludes assessing accuracy and efficiency using metrics such as precision, recall,
query time, and index construction time.



4 M. Pegia et al.

Previous works, such as [14] and [2], use pretrained models to extract features
for each modality on diverse datasets. They apply methods from [3], evaluating
performance based on exact kNN points rather than provided dataset labels.
However, our emphasis is on utilizing dataset labels for measuring method per-
formance. We selected the following approximate nearest neighbors similar to
the cited works on the current research [3]: tree-based structures, graph-based
structures, pruning techniques, brute-force approaches and baseline methods.

Tree-Based Methods: BallTree [4] uses hyper-spheres to create a tree hier-
archy, while CKDTree [19] extends the KD-trees for multiple dimensions
with hyper-rectangles. Random Projection Tree (RPT) methods, like Annoy
(Approximate Nearest Neighbors Oh Yeah) [16], utilize random projections
to split data points and build index structures for fast approximate nearest
neighbor search. On the contrary, PyNNDescent [9] employs randomized k-d
trees, combining randomized partitioning and nearest neighbor search to ef-
ficiently navigate the tree structure and find approximate nearest neighbors.

Graph-Based Methods: The HNSW (Hierarchical Navigable Small World)[17]
arranges the dataset into small-world graphs for efficient approximate near-
est neighbor search with minimal memory usage. SW-graph (Small World
Graph) [18] combines small-world graph and locality-sensitive hashing. It
balances retrieval accuracy and efficiency by leveraging the data’s local and
global structures.

Pruning Methods: SCANN (Scalable Nearest Neighbors) [11] uses locality-
sensitive hashing for fast approximate nearest neighbor search with single-
threaded and multi-threaded implementations for large-scale datasets.

Brute-Force Methods: Ball, KD-Tree, BruteForce, and BruteForce-BLAS [7]
are simple methods for solving the nearest neighbor search. They calculate
the distances between the query point and all data points to find the clos-
est neighbors. Although ensuring accuracy, these methods can be computa-
tionally expensive, especially for large datasets. BruteForce-BLAS improves
efficiency using the BLAS library for faster distance calculations, serving as
a baseline for calculating advanced approximate indexes.

Baseline Methods: Dummy-Algo-MT [10] and Dummy-Algo-ST offer simpler
and generic implementations. Dummy-Algo-MT is a multi-threaded brute-
force search implementation with parallel processing for improved perfor-
mance. Dummy-Algo-ST is a single-threaded version, provides a basic imple-
mentation for comparison. These baseline methods serve as reference points
for evaluating advanced approximate indexes.

4 Multi-Core and GPU processing

Current hardware capabilities can be exploited to improve the speed of a vari-
ety of tasks, including feature retrieval. For example, when dealing with data
that cannot be accommodated in memory, methods such as DiskANN [13] or
SPANN [6] utilise data locality and fast SSD storage. Also, multi-core processing



Time-Quality Tradeoff of MuseHash Query Processing Performance 5

has been exploited in retrieval, with examples such as SCANN [11], or through
parallelism at the level of query and data processing. This allows an algorithm
to make use of all the available hardware resources, drastically improving perfor-
mance, even though a linear speed-up may not be achievable. On the other hand,
making use of Graphic Processing Units (GPUs) has been popularized, specially
in the image processing field and in intensively parallel problems. In the case of
the retrieval task, the SONG [25] algorithm, for example, has been co-designed
to make use of GPUs, beating similar algorithms that are CPU-based. This high-
lights that when developing new indexing structures, it is advantageous to keep
in mind the capabilities of the underlying hardware.

In this section we define how the MuseHash algorithm is optimized to use
the available hardware as efficiently as possible and how it is transformed to
increase its time performance when more resources are available (scalability).
Concretely, we are focusing on the offline and querying phases of the algorithm.
Our approach is driven by the usage of parallel computation using multi-core
and GPU processing.

In the offline phase, the focus is on feature extraction. As this implies ex-
tracting features from the latent space of a Neural Network, the most viable
optimization is to use GPUs alongside specialized accelerated software when
performing the required forward pass (CUDA [20] and cuDNN [8]). Moreover,
the task can be done simultaneously by multiple GPUs as there are no dependen-
cies between samples. Notice that the proposed optimization can also be applied
in the querying phase if the incoming sample has no precomputed features.

In the querying phase, however, we propose to improve query processing
performance through two different strategies: query parallelism and data paral-
lelism. Both strategies are designed for high-capability environments, enabling
the scalability of algorithms with increased resources. Nevertheless, they are also
applicable to smaller devices with multi-core possibilities.

On one hand, the query parallelism strategy divides the incoming queries
into a set of processes, henceforth query processors, where each of them has a
different copy of the overall data. The query processors can be located in differ-
ent machines and can work independently due to the absence of dependencies
between queries. On the other hand, the data parallelism strategy splits the
workload of a single query into multiple processes that divide the full set of data
in equal parts to perform the subsequent similarity comparison. These processes
need to synchronize to produce a common result.

The proposed strategies are not contradictory and can be integrated together
for an increased performance, making use of multiple machines where different
query processors are located (query parallelism) and utilizing all the available
resources in each of them (data parallelism). Similarly to query parallelism, the
data parallelism strategy can be applied to processes located in different ma-
chines, but its implementation is much harder and the subsequent communica-
tion latency could be detrimental. In addition, we propose using GPU processing
to speed up the similarity comparison, as this accelerated hardware can increase
the performance of the internal computations of the algorithms.



6 M. Pegia et al.

5 Experiments

In this section, we report results from a set of experiments that explore query
processing performance of state-of-the-art methods with the MuseHash media
representations. In the offline phase, the focus is on feature extraction and the
implementation options are relatively straight-forward: using 4 GPUs simulta-
neously resulted in 20-fold speed-up compared to the CPU-only version. In the
querying phase, however, we have a choice between approximate indexing and
hardware-based implementations, so due to space limitations the focus here is on
a detailed analysis of the querying phase. We start by investigating the impact
of applying approximate high-dimensional indexes from the ANN Benchmarks
collection. In the remaining four experiments, we study the impact of hardware
on the brute-force scan and one particular approximate indexing strategy.

5.1 Datasets

We utilize two benchmark collections and three synthetically generated collec-
tions. The benchmark collections provide us with diverse modalities and rich
content for realistic analysis of results quality. While the relevant properties and
modalities are summarized in Table 1, they are:

AU-AIR The AU-AIR dataset [5] consists of eight aerial traffic surveillance
video clips at an intersection in Aarhus, Denmark. Captured on windless
days, the videos depict varied lighting conditions due to the time of day and
weather. With a resolution of 1920x1080 pixels, it comprises 32,823 frames
extracted at five frames per second to avoid redundancies.

LSC’23 This dataset was generated by an active lifelogger over the course of
18 months [12]. The primary resource of the collection is an image dataset
featuring fully redacted and anonymized wearable camera images. Captured
using a Narrative Clip device, these images have a resolution of 1024x768
pixels. Due to huge imbalance on the dataset, we filtered the original dataset
with using only the data that include label information with label frequency
greater than 257. This preprocessed dataset used in our experiments com-
prises 40926 images.

To evaluate scaling of the various approaches, three other synthetic datasets
are randomly generated using the uniform distribution (i.e., each hash possible
has equal probability of being present) over all the space defined by the hash
length, simulating the MuseHash enconding. The training sizes are 28000 (small
synthetic), 112000 (medium synthetic) and 448000 (large synthetic) sam-
ples with different hash lengths (32, 128, 512 and 2048) and 450 samples for
testing (querying).

5.2 Experimental Settings

We have run a large-set of experiments, but due to space limitations we report
the results of a representative sample in this section. For example, since the



Time-Quality Tradeoff of MuseHash Query Processing Performance 7

Table 1: Summary of two benchmark datasets used in experiments.

Ground Truth Modalities Collection Sizes

Dataset Labels Image Text Time Location Whole Retrieval Training Test

AU-AIR 8 32283 32183 2000 100
LSC’23 135 40926 40676 4000 250

ANN Benchmark collection contains a large set of algorithm implementations,
we have chosen to omit algorithms that (a) are alternative implementations of
the same approach or (b) perform poorly, leaving 5 indexing strategies and one
brute-force approach.

In our benchmark experiments, we have assessed the retrieval performance
of MuseHash using several evaluation metrics, including mean Average Preci-
sion (mAP), precision, recall, and F-score, but due to space limitations we focus
on F-score in our presentation. We have assessed query performance using la-
tency (milliseconds per query) and throughput (reported as thousand queries
per second). In the following we report on throughput, sometimes represented
as speed-up over a baseline implementation.

For the benchmark collections, the following feature vectors from each modal-
ity are used as input representations for our evaluation:

Image 4096-D vector from the fc-7 layer of pre-trained VGG16 network.5

Textual 768-D vector from pre-trained BERT model.6

Temporal 191-D vector representation for LSC’23 and 203-D vector for AU-
AIR [22]. The first four coordinates represent the year, the next 12 are for
month (one-hot-encoded), the next 31 for day (one-hot-encoded), the next
24 for hours (one-hot-encoded), the next 60 for minutes (one-hot-encoded),
and the next 60 for seconds (one-hot-encoded). AU-AIR has an additional
12 digits for microseconds (binary encoded).

Spatial 3-D vector with values (altitude, longitude, altitude).

We compute hash codes using MuseHash for different bit lengths dc = 16, 32, 64,
128, 256, 512, 1024, 2048. Moreover, we conduct experiments using both single
modalities and a combination of all modalities.

The first experiment with ANN Benchmarks was performed using a server
with Intel(r) Core(TM) i9-10920X CPU @ 3.50GHz (12 cores, 2 threads/core)
with 134.25 GB of RAM. The remaining experiments were performed on the
MareNostrum IV accelerated clusters from the Barcelona Supercomputing Cen-
ter, where each machine is an IBM Power9 8335-GTH @ 2.4GHz (20 cores, 4
threads/core) with 512 GB of RAM and 4 NVIDIA V100 GPU with 16GB RAM.
In each case, 5 executions are averaged, with error margins calculated with the
standard deviation.

5https://github.com/Leo-xxx/pytorch-notebooks/blob/master/Torn-shirt-
classifier/VGG16-transfer-learning.ipy

6https://github.com/maknotavailable/pytorch-pretrained-BERT



8 M. Pegia et al.

(1) AU-AIR: Visual mod./16b codes (2) LSC’23: Visual mod./16b codes

(3) AU-AIR: All mod/16b codes (4) LSC’23: All mod./16b codes

(5) AU-AIR: All mod./2048b codes (6) LSC’23: All mod/2048b codes

Fig. 1: CPU experiment results: AU-AIR (1st column), LSC’23 (2nd column).
Rows show visual modality with 16-bit codes, all modalities with 16-bit codes,
and all modalities with 2048-bit codes.

5.3 Experiment 1: Impact of Approximate Indexes

In this first experiment, we evaluate retrieval results on the AU-AIR and LSC’23
datasets. Figure 1 shows a representative sample of the results; similar observa-
tions hold with other settings. The first column of Figure 1 displays results for
the AU-AIR collection, covering from top to bottom (1) visual modality with
16-bit codes, (3) all modalities with 16-bit codes, and (5) all modalities with
2048-bit codes. The second column presents results for the LSC’23 dataset, fol-
lowing the same structure of modalities and hash code lengths. In each case, the
x-axis represents the F-score value (to make the graphs more readable, we focus
on the range from 0.5 to 1.0), while the y-axis represents throughput (thousand



Time-Quality Tradeoff of MuseHash Query Processing Performance 9

Fig. 2: Speed-up of Data Parallelism vs Query parallelism for different hash
lengths and datasets.

queries per second). As outlined above, while the ANN Benchmark contains a
large number of indexing algorithms, we report only the six best-performing
implementations here. As seen in the figure, each such approach offers some
different parameters, which lead to different tradeoffs between quality and time.

Overall, the figures show that the Hnswlib algorithm outperforms all other
approaches across both collections and all settings, both in terms of throughput
and result quality. This confirms results from recent studies with different set-
tings. The brute-force algorithm, unsurprisingly, performs worst, with through-
put below 1,000 queries per second in all cases.

The figure also shows that for AU-AIR, including more modalities improves
F-score of Hnswlib, while it decreases quality for other approaches. Increasing
the hash code length, up to 2048, enhances overall retrieval quality, but at the
cost of significantly reduced throughput. Regarding LSC’23, the incorporation
of textual information boosts precision and recall, aligning with the success of
textual queries using CLIP models in the VBS competition [15]. Using all avail-
able modalities further enhances retrieval results, again at the cost of reduced
throughput.

5.4 Experiment 2: Query Parallelism vs. Data parallelism

In this experiment, we focus on comparing data parallelism (different processes
contribute to the computation of each query) and query parallelism (different
processes answer different queries) strategies for scaling the brute-force algorithm
(using an implementation taken from the scikit-learn package [21]) which tra-
verses the full length of the dataset to find the exact match (O (n) complexity).
Figure 2 shows a representative sample of results, showing (1) data parallelism
and (2) query paralleism for the large synthetic dataset, and (3) query paral-
lelism for the AU-AIR dataset, for a variety of hash lengths In all graphs, the
speed-up represents throughput with varying number of processors compared to
the throughput of a single process; the optimal performance would be that with
X processes, the speed-up should be a factor of X.

As Figure 2(a) shows, data parallelism can yield considerable increase in per-
formance, but only when considering longer hash codes; with smaller hash-codes
the speed-up reaches a plateau and the same presumably holds even for hash



10 M. Pegia et al.

(1) Speed-up CPU vs GPU (2) QPS (1/s) CPU vs GPU

Fig. 3: CPU vs GPU parallelism comparison in the large synthetic dataset.
Results shown with speed-up (1) and queries per second (2) metrics. Optimal
scalability and GPU speed-up are computed taking as baseline the execution
with just one simultaneous process from the CPU only version.

code lengths of 2048. Figure 2(b) indicates that query parallelism scales better
than data parallelism, obtaining a speed-up factor of 25x, which is very close to
the optimal of 32x, for the largest synthetic collection. Finally, Figure 2(c) shows
that query parallelism results are somewhat worse for the AU-AIR dataset.

5.5 Experiment 3: GPU vs CPU comparison with brute-force

In these experiments we show the advantages of specialized hardware, concretely
GPUs7. Figure 3 shows that this hardware provides better performance than the
standard CPU multi-core processing. With the largest synthetic dataset and hash
length, we obtain a speed-up of x144 with only one GPU in regard to the CPU
sequential version. Moreover, if employing more GPUs simultaneously in a query
parallelism scenario, where every query processor has a different GPU, we can
accomplish an outstanding x419 speed-up. Lastly, as can be seen in Figure 3.2, it
is important to point out that GPUs provide almost the same number of queries
per second for each hash length in contrast to the CPU version, where the hash
length heavily impacts the performance.

5.6 Experiment 4: Query parallelism with PyNNDescent

Figure 4 shows the speed-up results of scaling PyNNDescent using multi-core
processing in a query parallelism scenario with the synthetic datasets. It can

7implementation taken from the cuML package [23]



Time-Quality Tradeoff of MuseHash Query Processing Performance 11

Fig. 4: Query parallelism with the PyNNDescent algorithm (with default param-
eters). Unfortunately, the executions of 32 processes with a hash length equal
to 2048 with the synthetic large dataset did not finish in a reasonable time (2
hours).

be seen that the algorithm scales similarly in all of them, reasonably increasing
the performance up to a speed-up between x3 and x8 when using 8 simultane-
ous processes. From this point on, employing more parallel processes does not
substantially improve the final time performance, especially in the case of small
hash lengths. In addition, these results show that the PyNNDescen algorithm is
quite constant with regard to the number of dataset samples, obtaining similar
scalability results with different sized datasets.

5.7 Experiment 4: Curse of dimensionality

Many ANN algorithms suffer from the curse of dimensionality problem, espe-
cially classic tree methods that create fast representations for speeding up the
similarity comparisons [24]. In these experiments we compare the performance
of a classical tree method (BallTree), a state-of-the-art ANN method (PyN-
NDescent) and the brute-force approaches when increasing the dimensionality
through the size of the hash lengths. Figure 5 shows the results for the largest
synthetic dataset. We can see that the BallTree algorithm already degrades to
the brute-force performance when increasing the hash length to a size of only 8.
In contrast, the PyNNDescent algorithm proves itself worth for tackling much
larger dimension datasets, only matching the brute-force performance after in-
creasing the length to 2048.

5.8 Discussion

In both benchmark datasets, we observed from Experiment 1 that the Hnswlib,
a fast approximate nearest neighbor search method, outperformed all other
methods, both in terms of througput and result quality. Overall, many index-
ing approaches performed well, yielding througput that was much better than
that achieved by any hardware-based approaches. For the hardware-based ap-
proaches, the query parallelism strategy excellent speed-up capacity, especially
with GPU processing, and also combined well with an approximate indexing
approach, even though this combination was still outperformed by the best ap-
proximate indexing approach.



12 M. Pegia et al.

Fig. 5: Curse of dimensionality of brute-force, BallTree (with leaf_size = 100)
and PyNNDescent (with default parameters) algorithms in the large synthetic
dataset with different hash lengths. Notice that the x-axis is not proportional.

6 Conclusion

In this paper, we have considered query performance for the multi-modal hashing
codes produced by MuseHash, using both state-of-the-art approximate indexing
approaches and hardware-based approaches. Our results indicate that these tech-
niques improve performance to varying extent, but that they can also often be
combined for further performance improvements. Future work includes applying
a combination of the top-performing Hnswlib indexing algorithm, along with
parallel hardware-based strategies.

Acknowledgment

The work reported here was supported by the EU’s Horizon 2020 research and
innovation programme under grant agreements H2020-101070250 CALLISTO,
H2020-101070262 WATERVERSE, and H2020-101080090 ALLIES, and by the
Spanish Ministry of Science (MICINN), the Research State Agency (AEI) and
European Regional Development Funds (ERDF/FEDER) under grant agree-
ments PID2021-126248OB-I00, MCIN/AEI/10.13039/ 501100011033/FEDER,
UE, Severo Ochoa Center of Excellence CEX2021-001148-S-20-3 and the Gener-
alitat de Catalunya (AGAUR) 2021-SGR-00478.



Time-Quality Tradeoff of MuseHash Query Processing Performance 13

References

1. Abbasifard, M.R., Ghahremani, B., Naderi, H.: A survey on nearest neighbor search
methods. International Journal of Computer Applications 95(25) (2014)

2. Arulmozhi, P., Abirami, S.: A comparative study of hash based approximate near-
est neighbor learning and its application in image retrieval. Artificial Intelligence
Review (2019)

3. Aumüller, M., Bernhardsson, E., Faithfull, A.: Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. In: International conference on
similarity search and applications. pp. 34–49. Springer (2017)

4. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library.
In: Similarity Search and Applications: 6th International Conference, SISAP 2013,
A Coruña, Spain, October 2-4, 2013, Proceedings 6. pp. 280–293. Springer (2013)

5. Bozcan, I., Kayacan, E.: Au-air: A multi-modal unmanned aerial vehicle dataset
for low altitude traffic surveillance. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). pp. 8504–8510. IEEE (2020)

6. Chen, Q., Zhao, B., Wang, H., Li, M., Liu, C., Li, Z., Yang, M., Wang, J.: Spann:
Highly-efficient billion-scale approximate nearest neighborhood search. Advances
in Neural Information Processing Systems 34, 5199–5212 (2021)

7. Chen, X., Güttel, S.: Fast exact fixed-radius nearest neighbor search based on
sorting. Preprint at arXiv. https://doi. org/10.48550/ARXIV 2212 (2022)

8. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E.: cudnn: Efficient primitives for deep learning (2014)

9. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th international conference
on World wide web. pp. 577–586 (2011)

10. Geiger, M.J.: A multi-threaded local search algorithm and computer implemen-
tation for the multi-mode, resource-constrained multi-project scheduling problem.
European Journal of Operational Research 256(3), 729–741 (2017)

11. Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern, F., Kumar, S.: Accel-
erating large-scale inference with anisotropic vector quantization. In: International
Conference on Machine Learning. pp. 3887–3896. PMLR (2020)

12. Gurrin, C., Jónsson, B.Þ., Nguyen, D.T.D., Healy, G., Lokoc, J., Zhou, L., Rossetto,
L., Tran, M.T., Hürst, W., Bailer, W., et al.: Introduction to the sixth annual lifelog
search challenge, lsc’23. In: Proceedings of the 2023 ACM International Conference
on Multimedia Retrieval. pp. 678–679 (2023)

13. Jayaram Subramanya, S., Devvrit, F., Simhadri, H.V., Krishnawamy, R.,
Kadekodi, R.: Diskann: Fast accurate billion-point nearest neighbor search on a
single node. Advances in Neural Information Processing Systems 32 (2019)

14. Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.: Approximate
nearest neighbor search on high dimensional data—experiments, analyses, and im-
provement. IEEE Transactions on Knowledge and Data Engineering (2019)

15. Lokoč, J., Andreadis, S., Bailer, W., Duane, A., Gurrin, C., Ma, Z., Messina, N.,
Nguyen, T.N., Peška, L., Rossetto, L., et al.: Interactive video retrieval in the age
of effective joint embedding deep models: lessons from the 11th vbs. Multimedia
Systems 29(6), 3481–3504 (2023)

16. Luna, A.: Using annoy in package c++ code
17. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-

bor search using hierarchical navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence 42(4), 824–836 (2018)



14 M. Pegia et al.

18. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest
neighbor algorithm based on navigable small world graphs. Information Systems
45, 61–68 (2014)

19. Narasimhulu, Y., Suthar, A., Pasunuri, R., Venkaiah, V.C.: Ckd-tree: An improved
kd-tree construction algorithm. In: ISIC. pp. 211–218 (2021)

20. NVIDIA, Vingelmann, P., Fitzek, F.H.: Cuda, release: 10.2.89 (2020), https://
developer.nvidia.com/cuda-toolkit

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

22. Pegia, M., Jónsson, B.Þ., Moumtzidou, A., Gialampoukidis, I., Vrochidis, S., Kom-
patsiaris, I.: Musehash: Supervised bayesian hashing for multimodal image repre-
sentation. In: Proceedings of the ACM International Conference on Multimedia
Retrieval (ICMR). pp. 434–442 (2023)

23. Raschka, S., Patterson, J., Nolet, C.: Machine learning in python: Main devel-
opments and technology trends in data science, machine learning, and artificial
intelligence. arXiv preprint arXiv:2002.04803 (2020)

24. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: VLDB. vol. 98, pp.
194–205 (1998)

25. Zhao, W., Tan, S., Li, P.: Song: Approximate nearest neighbor search on gpu.
In: 2020 IEEE 36th International Conference on Data Engineering (ICDE). pp.
1033–1044. IEEE (2020)

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

	Time-Quality Tradeoff of MuseHash Query Processing Performance

